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Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic

Received 5 November 1999; received in revised form 4 February 2000; accepted 23 February 2000

Abstract

A combination of the Langevin-theory-based James–Guth equation with the phenomenologicalC2 term of the Mooney–Rivlin equation
(modified by introducing an additional empirical parameter) is shown to represent the tensile stress–strain dependencies obtained on
retraction of a number of carbon-black- and silica-reinforced butadiene–styrene networks. The stress–strain behavior at increasing strain
of both pre-strained and virgin specimens is more complex but it can be satisfactorily described using the concept of a strain-dependent finite
extensibility parameter (introduced previously for unfilled networks). The accuracy of data description is better than ca. 4%. Similarly to
unfilled networks, the increase in the finite extensibility parameter with increasing strain is ascribed to strain-induced changes in network
topology (increase in network mesh size). On retraction, such changes probably take place to a much lesser degree if at all.q 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

In the preceding paper [1], experimental tensile stress–
strain behavior up to break of unfilled single-phase rubber-
like networks was compared with theoretical predictions
[2–4] but a satisfactory data description was not obtained.
On the other hand, an extension of the approach suggested
originally by Morris [5] proved to provide a useful starting
point for data analysis and description. We have combined
the Langevin-theory-based James–Guth equation in its non-
approximative form [2] (Morris used a series expansion
approximation which is applicable in a limited strain
range only) with theC2 term of the phenomenological
Mooney–Rivlin equation [6,7]. The resulting equation has
been designated as the JGC2 equation and shown to provide
a satisfactory description of stress–strain dependencies
(SSDs) of unfilled pre-strained networks and of some virgin
stress–strain dependences up to break [1]. However, devia-
tions of the experimental SSDs from the JGC2 equation in
the high elongation region were generally observed. The
latter could be quantitatively taken into account by introdu-
cing the concept of a strain-dependent finite extensibility

parameter. In this way, an equation designated as JGC2L
was obtained and successfully applied to the description of
experimental data. The increase in the finite extensibility
parameter with tensile strain is considered to be a relaxa-
tional phenomenon connected with a strain-induced
increase in network mesh size. One of its reasons may be
sliding of entanglements. In very lightly crosslinked
networks a contribution from semi-permanent flow cannot
be excluded.

In the low-strain region and for not too high degrees of
crosslinking, the JGC2L equation reduces to the two-para-
meter Mooney–Rivlin equation. Five additional parameters
(three of them adjustable) are present in the JGC2L equa-
tion. They describe the strain dependence of the finite exten-
sibility parameter in the medium- and high-strain region and
give information on the final point of the SSD, i.e. on ulti-
mate properties. The tensile stress–strain behavior of bimo-
dal poly(dimethylsiloxane) networks, of a natural rubber
(NR) network under condition of suppressed orientational
crystallization and of networks based on styrene–butadiene
rubber (SBR) with various degrees of crosslinking was
shown to be described by the JGC2L equation in the
whole strain range with an accuracy better than 4% [1].

In comparison with unfilled single-phase rubber-like
networks, the low-strain behavior of networks containing
filler particles or hard polymer domains shows additional
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complicating features. The filler-reinforced networks are
known to deviate from the Mooney–Rivlin equation with
increasing filler concentration [8]. In the present paper, it
will be shown that this feature can be taken into account by
modifying suitably theC2 term in order to obtain an extra
flexibility of its strain dependence. This is achieved by
introducing one more adjustable parameter. The JGC2L
equation applicable to unfilled networks is thus altered to
a combination of the modifiedC2 term with the James–Guth
equation, the finite extensibility parameter of which depends
on strain. The resulting equation which is designated by the
JGmC2L code, shows a surprisingly universal applicability.
It is able to give a satisfactory description of the dependen-
cies of nominal stress on nominal (macroscopic) strain
measured on two-phase composite elastomeric materials
of various composition and structure.

It should be noted that a coherent picture of filler reinfor-
cement in general, and a method of description of stress–
strain cycles of filler-reinforced rubber vulcanizates in parti-
cular, is offered by the van der Waals network model [9,10].
The latter assumes the existence of filler–filler (ff) and
filler–matrix (fm) contacts and shows that the intrinsic
strain within the rubber bridge, which is located between
filler particles, exceeds the macroscopic strain. This leads to
pronounced non-Gaussian effects. Slippage of the ff and fm
contacts is assumed to occur when their respective critical
strengths (fff , ffm) are exceeded. Slipping of ff contacts (plas-
tic deformation of filler aggregates) takes place at low
strains and is responsible for the quasi-permanent strain
(tension set) remaining at the end of the elongation–retrac-
tion cycle. Slipping of fm contacts takes place with increas-
ing strain and leads to the Mullins strain-softening.
Mathematical processing of the underlying assumptions
enables a qualitatively satisfactory description of the experi-
mental stress–strain cycles using 10 adjustable parameters
(three for the matrix, seven for the filler–filler and filler–

matrix interactions). A comparison of the van der Waals
model with experimental data brings a number of interesting
generalizations and predictions together with numerical
characteristics of the ff and fm contacts. However, systema-
tic deviations of the experimental stresses from the fitted
curves of ca 10% (occasionally up to 20%) occur in some
strain regions (cf. Ref. [9], Fig. 6c). For some systems, e.g.
for vulcanizates containing high loadings of silica, the
theory predicts a rather unrealistic stress–strain dependence
with a discontinuity of the first derivative at low strains.

These facts lead us to the conclusion that the quality of
stress–strain data description offered by the van der Waals
model is not sufficient for our purpose. Moreover, participa-
tion of other mechanisms not considered in the van der
Waals model cannot be excluded. Therefore, in the present
treatment, we prefer to rely on a combination of the mole-
cular and phenomenological approach of the JGmC2L type.
It is less restrictive than the van der Waals model in that it
leaves more freedom for a satisfactorily accurate data
representation, thus offering a basis for a possible sound
interpretation of the parameter–composition–structure
relationships in the future.

The present paper (Part I) compares the proposed
JGmC2L equation with data obtained preponderantly on
pre-strained networks. The forthcoming paper (Part II)
will concentrate on virgin stress–strain dependences
measured up to break.

2. Experimental

Two networks based on sulfur-vulcanized SBR contain-
ing reinforcing silica filler and two unfilled SBR networks
were prepared by mill-mixing and press-curing in the
conventional way. Composition of the rubber compounds
is given in Table 1. The SBR B SG network was prepared
from an unfilled vulcanizate (SBR B) using the sol–gel
process [11]; a thin strip of the vulcanizate was swollen in
tetraethoxysilane, immersed in a water solution of butyla-
mine to bring about hydrolysis and condensation of tetra-
ethoxysilane to silica, and dried to a constant weight under
vacuum at 508C. The tread material is based on a truck tire
tread compound of undisclosed composition which was
supplied by a tire factory. The compound has deliberately
been given a shorter curing time than is the optimum one in
order to obtain a high elongation-at-break.

The stress–strain dependencies were measured at room
temperature using dumb-bell specimens (initial distance of
marks 20 mm) and an Instron tester equipped with an
extensometer. The cross-head speed was 50 mm/min, i.e.
the initial strain rate was ca 250% min21. With increasing
distance of clamps, the strain rate slightly decreases. On
cycling, the extension of the sample was followed by its
retraction without any pause. The time interval between
the end of the first elongation–retraction cycle and start of
the second elongation was 5 min.
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Table 1
Composition of the elastomeric materials prepared (All crosslinking
systems contain ZnO and stearic acid in usual amounts.)

Code Composition (phr, weight parts per 100 weight parts
of rubber)

SBR 0 SBRa, MORb 0.5, sulfur 0.5
SBR Bc SBR, MOR 0.5, sulfur 0.5, TESPTd 4
V35 S05 TEA SBR, Ultrasil VN3e 35, MOR 0.5, sulfur 0.5,

triethanolamine 2.5
V40 S05 SBR, Ultrasil VN3 40, MOR 0.5, sulfur 0.5, TESPT 4
SBR B SG SBR B subjected to sol–gel process; silica formed in

situ 24
Tread truck tire tread of unknown composition, undercured

a Obtained by emulsion radical copolymerization of butadiene and
styrene (23%).

b 2-(Morpholinosulfanyl)benzothiazole.
c Identical with the elastomer used previously [1].
d Bis[3–(triethoxysilyl)propyl] tetrasulfide.
e Precipitated silica, specific surface area 200 m2/g (Degussa, Germany).



Some stress–strain data were taken from literature; infor-
mation on the respective networks is given in Table 2. The
measurements of Bueche [12] were done under quasi-equi-
librium conditions: load was increased stepwise in 5-min
intervals and strain was recorded 4.5 min after each incre-
ment of load when it reached a virtually constant value. The
average strain rate can be estimated to be ca 1–2% min21.
Ambacher et al. [9] (and probably Kilian et al. [10], as well)
used a constant strain rate of 5% min21, whereas that used

by Ikeda et al. [11] was ca 500% min21. The SSD of the V50
Amb network was measured at 908C when the strain-
induced crystallization of the NR network most probably
does not occur; all other SSDs were obtained at room
temperature.

3. Results

3.1. The modified Mooney–Rivlin equation

For elastomeric materials conforming to the Mooney–
Rivlin equation [6,7]

s � 2C1�l 2 1=l 2�1 2C2�1 2 1=l3� �1�
the reduced stresss red defined by the relation

sred� s=�l 2 1=l 2� �2�
is a linear function of the reciprocal extension ratio 1=l. s is
the nominal tensile stress (force per unit of undeformed
cross-sectional area), the extension ratiol � L=L0 is the
ratio of deformed and undeformed length, andC1, C2, are
adjustable parameters.

Filler-reinforced rubber vulcanizates do not generally
conform to Eq. (1) [8]. As an example, low-strain SSDs of
four filler-reinforced vulcanizates based on SBR and NR are
shown in the Mooney–Rivlin coordinates in Fig. 1. The
experimental dependencies are curved, the curvature
increasing with the filler concentration. We have found
that this type of behavior can be satisfactorily described if
the Mooney–Rivlin equation is modified by introducing an
additional empirical parametern into Eq. (1):

s � 2C1�l 2 1=l 2�1 2C2�1 2 1=l3n� �3�
We will designate Eq. (3) as the modified Mooney–Rivlin
equation and the second term on the right-hand side as the
modified C2 term (mC2). The curves in Fig. 1. are drawn
using Eq. (3) with parameter values given in Table 3; fit of
the data may be regarded as satisfactory. It should be noted
that unlike Eq. (1), the modified Mooney–Rivlin equation is
not associated with a complete three-dimensional theory
and is thus limited to the description of tensile stress–strain
data (e.g. the values of parameters obtained in simple elon-
gation cannot be expected to predict behavior in uniaxial
compression).

3.2. The JGmC2L equation

The result of the preceding paragraph may now be
utilized for the analysis and description of SSDs of filler-
reinforced networks in a wide range of strain. To this aim,
we modify the previously proposed and tested JGC2L equa-
tion [1] by replacing theC2 term by the mC2 term. In the
forthcoming text, the resulting equation will be designated
as the JGmC2L equation. It is a combination of the non-
approximative form of the two-parameter James–Guth
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Table 2
Description of elastomeric materials (data taken from literature sources).
(All crosslinking systems contain ZnO and stearic acid in the usual amounts)

Code Composition (phr) Reference

V30 S05 SBR, precipitated silicaa

30, MOR 0.5, sulfur 0.5
11

V50 Bue SBR, precipitated silicaa

50, accelerator 2, sulfur 3,
triethanolamine 1

12

V50 Amb NR, precipitated silicaa 50 9
Hf30 Bue SBR, HAFb 30, accelerator

2, sulfur 1.75
10

Hf40 Kil c SBR, HAF 40 10
Hf20 Ambc SBR, HAF 20 9
Hf40 Ambc SBR, HAF 40 9
Hf60 Ambc SBR, HAF 60 9

a Precipitated silica of the Ultrasil VN3 type. Specific surface area ca
200 m2/g.

b HAF (high-abrasion furnace, N330) carbon black, surface area ca
80 m2/g.

c Crosslinked using a sulfur/accelerator system; details not given. For
explanation of other symbols, see Table 1.

Fig. 1. Comparison of experimental stress–strain dependences measured at
low strains (points) with the modified Mooney–Rivlin equation (Eq. (3),
(curves)). For parameter values, see Table 3. 1—V30 S05, 2—V35 S05
TEA, 3—V50 Amb, 908C, 4—Hf40 Kil.



equation with the modified two-parameter mC2 term:

s � 2C1�lm=3�{L21�l=lm�2 �1=l3=2�L21�1=l1=2lm�}

12C2�1 2 1=l3n�
�4�

lm is the finite (or limiting) extensibility parameter, i.e. the
hypothetical highest possible extension ratio.L21 is the
inverse Langevin function. The applicability of Eq. (4) is
subject to similar limitations as that of Eq. (3).

Similarly to unfilled networks, deviations from Eq. (4) of
experimental SSDs of filler-reinforced networks appear in
the high-strain region and, using the same type of reasoning,
they may be ascribed to a strain-induced progressive growth
of the finite extensibility parameter which is caused by a
growth of the average network mesh size. The dependence
of lm on l can be obtained from the comparison of Eq. (4)
with experimental data [1]. For unfilled networks, it was
shown to be reasonably well described by the following

power function [1]:

l # l1 : lm � lm;1

l . l1 : lm � lm;1 1 �lm;2 2 lm;1�{ �l 2 l1�=�l2 2 l1�} a

�5�
Eq. (5) contains five parameters�l1; l2; lm;1; lm;2;a�: From
them, however, only three are truly adjustable:l1; lm;1;and
a. The extension ratiol2 is the maximum extension ratio
chosen by the experimentor for a given experiment or the
extension ratio at break which is a property of the material.
The finite extensibilitylm,2 at extension ratiol2 is pre-
determined by the values of the other parameters with
virtually no further possibility of adjustment. The total
number of adjustable parameters in the JGmC2L equation
(Eqs. (4) and (5)), is therefore six:n, C1, C2, l1, lm,1, a,
while the remaining two parametersl2, lm,2 define the strain
range where the stress can be calculated and supplement the
information for that calculation.

The retraction and second elongation data are compli-
cated by the formation of tension set, TS� �Ls 2 L0�=L0;

whereLs is the length of the specimen at the end of retrac-
tion or at the start of second elongation. In the processing of
such data, we use the same simple method as previously [1].
In the first step, corrected values of the extension ratiol cor

are calculated from experimental values of the extension
ratio lexp by subtracting the quasi-permanent tension set:
lcor � lexp 2 TS: The experimental SSDs obtained on
retraction and on second extension are thus merely shifted
to the left to the origin by the respective values of TS. In the
second step, corrected data are compared with the JGmC2L
equation (Eqs. (4) and (5)) to obtain the required values of
parameters [1]. For assessing the quality of fit, three differ-
ent plots are used: linear coordinates (they accentuate the
high-strain data), the Mooney–Rivlin plot (it puts emphasis
on the low-strain data), and log(reduced stress) vs. extension
ratio (it gives information on the relative deviation of the
experimental reduced stress from the fitted curve in the
whole range of strain).

Experimental points with a non-zero tension set obtained
on retraction and on the second elongation may, in principle,
be compared with calculated curves using two types of
plots:

• Type A: Experimental stress is plotted vs.corrected
experimental extension ratios,l cor; experimental
corrected reduced stress is calculated using the expres-
sion sred;cor � s=�lcor 2 1=l 2

cor�; curves are calculated
and plotted for the required range ofl using the para-
meter values obtained in the manner described.

• Type B: Experimental data are plotted usinguncorrected
extension ratios,lexp. Experimental reduced stress is
calculated using the expression:sred;exp� s=�lexp 2
1=l 2

exp�; for lexp decreasing to�1 1 TS�; s red decreases
to zero (its logarithm tends to2∞). The fitted stress
calculated using the appropriate parameter values must
now be plotted vs. the “uncorrected” extension ratio
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Table 3
Parameters of the modified Mooney–Rivlin equation (Eq. (3)) for some
elastomeric materials

Parameter V30 S05 V35 S05 TEA V50 Amb Hf40 Kil

n 3.2 6.7 11.0 4.95
C1 0.041 0.050 0.298 0.40
C2 0.282 0.320 0.496 0.25

Fig. 2. Stress softening of an SBR network (V50 Bue) reinforced with
precipitated silica. Experimental data (points), JGmC2L equation (curves;
for parameter values, see Table 4). 1—1st elongation; 2—2nd elongation
(after removing tension set by swelling in benzene); 3—2nd elongation
(after 20 h recovery of the pre-strained specimen at 1158C).



�luncor� l 1 TS�; i.e. the calculated stress–strain curve
is shifted to the right by TS; the calculated reduced stress
is obtained fromsred;uncor� s=�luncor2 1=l 2

uncor�:
Type A plot is exemplified by curve 6b in Fig. 4 while

curves 5, and 6 in Fig. 3 and curves 5 and 6a in Fig. 4 are
plotted using type B plot. The subscripts exp, cor, and uncor,
are omitted in all figures.

3.3. Tests of the JGmC2L equation

3.3.1. Repeated elongation–retraction cycles
One of the early theoretical and experimental studies of

the Mullins strain-softening observed in filler-reinforced
rubber vulcanizates were those of Bueche [12,13]. Fig. 2
quotes his stress–strain data obtained on an SBR vulcani-
zate reinforced with a high loading of precipitated silica
[12]. The experimental data for the first elongation (points
1) are represented by curve 1 which is drawn using the
JGmC2L equation (Eqs. (4) and (5)), and parameter values
given in Table 4. Though the number of experimental points
is rather small, the parameter values are substantiated
reasonably well. The data cannot be described by a curve
that would be based on a considerably different set of para-
meters. Purely qualitatively,n is definitely higher than
unity, C2 is higher than zero, the finite extensibility para-
meter definitely increases with the extension ratio.

Before running the second elongation (points and curve
2), the silica-filled samples had to be relaxed by swelling in
benzene in order to remove, or diminish, the relatively high
tension set to a negligibly small value. From Table 4, we can
see that pre-straining tol � l2 � 3:6 has caused stress-
decreasing changes in all parameters:n, C1, C2, have
decreased, and, more significantly,l1, lm,1, have increased
in such a way as to make the finite extensibility parameter
virtually constant in the strain range not exceeding the pre-
strain. In other words, pre-straining simplifies the stress–
strain behavior and makes it approach the Langevin theory
predictions. It should be recalled that similar changes in the
finite extensibility parameter and in its strain dependence
were observed in our previous paper [1] where an unfilled
network (SBR B) was repeatedly extended. A close corre-
spondence between the softening processes in unfilled and
filled vulcanizates was already observed by Harwood et al.
[14] who came to the conclusion that the softening process
was mainly due to the rubber phase alone.

From his data on the first elongation, Bueche infers that
his silica-reinforced rubber appears abnormally hard for
small loads. At a stress of about 0.4 MPa, the material
does not approach an equilibrium strain during the time
interval of measurement and it actually behaves somewhat
as though it had reached a yield point. According to Bueche,
this abnormal behavior appears to be associated with filler–
filler structures—aggregates—in the material. Above a
stress of about 0.4 MPa, the aggregates break apart and
give rise to the pseudo-yield phenomena. Since our para-
metern is determined by the curvature of the stress—strain
dependence at low strains, its high value obtained on the
first elongation appears to be a logical reflection of such a
pseudo-yield phenomenon. On the second elongation, a
much lower value ofn was obtained. This indicates that
the original filler–filler structure has not been reformed to
a significant degree by the swelling–drying procedure not
even by the high-temperature exposition. On the other hand,
the high-strain behavior of the pre-strained sample has
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Table 4
Parameters of the JGmC2L equation and other properties of the V50 Bue
network

Parameter 1st elongation 2nd elongationa 2nd elongationb

n 13.0 3.0 3.0
C1 0.165 0.107 0.190
C2 0.130 0.074 0.058
l1 2.00 3.64c 2.0
l2 3.63 3.64 3.63
lm,1 3.48 4.153

c 3.48
lm,2 4.685 4.153 4.85
a 1.22 – 1.10
C2/C1 0.8 0.7 0.3
k 0.74 0 0.84

a After removing the tension set by swelling in benzene.
b After 20 h recovery of the pre-strained elastomer at 1158C.
c With l1 � l2 and lm;1 � lm;2; the JGmC2L equation reduces to the

JGmC2 equation.

Fig. 3. Stress softening of SBR networks reinforced with carbon black:
experimental data (points), JGmC2L equation (curves; for parameters,
see Tables 5 and 6). 1, 2a, 2b, 3—Hf30 Bue; 4, 5, 6—Hf40 Kil (points
and curves are shifted upwards by 2 MPa). 1—1st elongation, 2a and 2b—
2nd elongation following pre-strain to 165% (2b is equal to 1st elongation
for l . 2:65), 3—2nd elongation following pre-strain to 280%. 4—1st
elongation, 5—1st retraction, 6—2nd elongation. 5, 6—type B plot.



virtually been reformed by heat treatment at 1158C. A
comparison of parameters given in Table 4 for curves 1, 3
shows that the main result of the pre-strainplus thermal
treatment procedure is a decrease in the parametersn
and C2, which seem to be sensitive to the presence of
hard-phase particles and to the degree of their intercon-
nection. Changes in the remaining parameters are less
significant.

An average slope of the dependence of the finite extensi-
bility parameterlm on extension ratiol may be character-
ized by the expression:

k � �lm;2 2 lm;1�=�l2 2 l1� �6�
From Table 4, one can see that due to pre-strain,k has
dropped to zero while the subsequent heat treatment more
than restored its original value.

The effect of pre-strain amplitude on the softening of a
carbon-black-reinforced network is shown in Figs. 3 and 4.
The stress at the highest pre-strain is not given in Bueche’s
Fig. 3 [12]. Therefore, it was estimated here by extrapola-
tion. The parameters for curves drawn using Eqs. (4) and (5)
are given in Table 5. It can be seen that under quasi-equili-
brium conditions, the presence of 30 phr of HAF carbon
black does not lead to any significant deviation from the
Mooney–Rivlin behavior at low strains, as judged from a
rather low value ofn. Similarly to the SBR-silica network,
all three parameters,n, C1, and C2, show a tendency to
decrease with pre-strain, the finite extensibility parameter
becoming less strain-dependent (k decreases).

Two elongation–retraction cycles were measured by

Kilian et al. [10] on an SBR vulcanizate containing HAF
carbon black. The results are shown in linear coordinates in
Fig. 3 and in coordinates log(reduced stress) vs. extension
ratio in Fig. 4. The parameter values for the curves drawn
using the JGmC2L equation (Eqs. (4) and (5)) are given in
Table 6. It should be noted that then, C1, andC2, values in
Table 6 differ from those obtained from a comparison of
data with the modified Mooney–Rivlin equation (Table 3):
the JGmC2L equation includes a finite extensibility contri-
bution while the modified Mooney–Rivlin equation does
not. Both a higher concentration of HAF carbon black and
a somewhat higher strain rate are apparently responsible for
highern, C1 andC2, (Table 6) obtained from the first elon-
gation data of Kilian et al. when compared with the values in
Table 5 based on Bueche’s measurements. The parameterk
in Table 6 also appears to be slightly higher. On the other
hand, the overall effects of repeated elongation do not seem
to significantly depend on strain rate and presence of tension
set. Softening observed on the second elongation with
respect to the first elongation results, generally, from an
increase inl1, andlm,1, (this leads to a decrease ofk) and
from a decrease ofn, C1, and C2. Retraction behavior is
rather simple, withk � 0; i.e. lm is virtually constant; it is
approximately given by the value oflm,2 of the preceding
elongationminusthe change of TS relative to the preceding
elongation.

3.3.2. Stress–strain behavior on retraction
Some more results on the stress–strain behavior of filled

networks on retraction are shown in Fig. 5. Here six retrac-
tion curves for different rubber–filler systems and for one
unfilled network are plotted in linear coordinates using
corrected extension ratios (type A plot). In Fig. 6, these
SSDs (with data on one more unfilled network) are plotted
in the Mooney–Rivlin coordinates and, in Fig. 7, in the
coordinates log(reduced stress) vs. the (corrected) relative
strain (the corrected strain,1 � l 2 TS2 1; is normalized
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Fig. 4. Data and curves of Fig. 3 in coordinates log(reduced stress) vs.
extension ratio. Points and curves 4, 5, 6a, 6b are shifted upwards by 0.5.
5, 6a—type B plot, 6b—type A plot.

Table 5
Parameters of the JGmC2L equation and other properties of the Hf30 Bue
network

Parameter 1st elongation 2nd elongationa 2nd elongationb

n 1.26 1.12 1.10
C1 0.173 0.138 0.145
C2 0.272 0.270 0.230
l1 1.99 2.65c 3.30
l2 3.79 2.65 3.79
lm,1 2.90 3.07c 3.97
lm,2 4.093 3.07 4.035
a 1.42 – 1.22
C2/C1 1.57 1.96 1.58
k 0.66 0 0.13

a Following 1st elongation tol � 2:65 (curves 2a in Figs. 3 and 4).
b Following 1st elongation tol � 3:79 (curves 3 in Figs. 3 and 4).
c With l1 � l2 and lm;1 � lm;2; the JGmC2L equation reduces to the

JGmC2 equation. Curves 2b in Figs 3 and 4 described using parameters for
1st elongation,l . 2:65:



with respect to the maximum corrected strain on retraction,
1max� lp 2 TS2 1; wherelp is the maximum extension
ratio on the first elongation, TS is the tension set at the end
of the first retraction). Curves are drawn using parameter
values of Eq. (4) which are given in Table 7. All retraction
stress–strain data can be represented with a good accuracy
by a four-parameter combination of the James–Guth equa-
tion with the mC2 term, i.e. by the JGmC2 equation. The
information on the retraction behavior is supplemented by
two more quantities, TS andl2. The latter is the highest
(corrected) extension ratio and indicates the range of applic-
ability. For the materials shown, the finite extensibility para-

meter on retraction has been found to be virtually strain-
independent,k being zero.

The relative difference between the experimental stress
and the stress given by the Langevin-theory-based James–
Guth contribution can be expressed as the ratio of the mC2

term and the total stress. This ratio is rather large at low
strains (several tens of per cent), decreases with increasing
l and, at high strains, becomes rather insignificant (several
per cent). The fit of the JGmC2 equation to the retraction
data is very good in the whole range of strain and relative
deviations of the experimental reduced stresses from the
fitted curves (Fig. 7) do not significantly depend on
strain—they are scattered almost randomly. The parameter
n of filled vulcanizates on retraction is mostly unity
increasing slightly (up to 1.4) at high loadings of HAF
black. The stress–strain behavior of unfilled SBR networks
on retraction could only be described withn smaller than
unity.

TheC1 parameter of unfilled networks is seen to increase
with the degree of chemical crosslinking (SBR B vs. SBR
0). It also increases with the HAF black loading and with
silica loading. In the SBR B SG network containing in-situ-
formed silica, C1 is much larger than in a comparable
network containing precipitated silica (V40 S05). However,
it should be borne in mind that all the effects also depend on
the magnitude of pre-strain (or pre-stress). A simple
measure of the relative severity of pre-stressing is defined
in Table 7 as a ratio of the maximum stress in the first
elongation (pre-stress amplitudesmax,1e) and the stress-at-
break,sb, of the virgin specimen. The data given in Table 7
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Table 6
Parameters of the JGmC2L equation and other properties of the Hf40 Kil
network

Parameter 1st
elongation

1st
retraction

2nd
elongation

2nd
retraction

n 4.32 1.0 2.0 1.6
C1 0.240 0.178 0.192 0.194
C2 0.300 0.267 0.310 0.205
l1 1.66 3.39a 2.58 3.33a

l2 3.50 3.39 3.38 3.33
lm,1 2.35 3.548

a 3.45 3.53a

lm,2 3.747 3.548 3.59 3.53
a 1.27 – 2.0 –
TS – 0.11 0.108 0.17
C2/C1 1.3 1.5 1.6 1.1
k 0.80 0 0.18 0

a With l1 � l2 and lm;1 � lm;2; the JGmC2L equation reduces to the
JGmC2 equation.

Fig. 5. First retraction in type A plot: experimental data (points), JGmC2L equation (curves; for parameters, see Table 7). 2—SBR B, 3—V40 S05, 4—Hf20
Amb, 5—V50 Amb, 908C, 6—Hf40 Amb, 7—Hf60 Amb, 8—SBR B SG.



show that in this respect, the individual rubber-like
materials are not strictly comparable. Nevertheless, the
difference between the largeC2 values of carbon-black-
containing compounds on the one hand and the smallC2

values of silica-containing compounds on the other may

be a real effect (the difference is at first sight mani-
fested by a larger slope in the region of high reciprocal
extension ratios of curves 4, 6 and 7 in Fig. 6 when
compared with curves 3 and 5). Also, values of the ratio
C2=C1 of unfilled lightly crosslinked networks are obviously
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Fig. 6. Data and curves of Fig. 5 in the Mooney–Rivlin coordinates (only reduced-stress values lower than 1.6 MPa are given). Points and curve 1—SBR 0.

Fig. 7. Data and curves of Fig. 6 in coordinates log(reduced stress) vs. relative strain (corrected strain normalized with respect to the maximum strain on
retraction). Points and curves 5, 8, are shifted vertically by20.25 and1 0.2, respectively.



significantly larger (.3.8) than the respective values of
filler-reinforced networks (,2).

The normalized curves plotted in Fig. 7 have rather
similar shapes. In the region of relative strain from zero
to ca 0.75, the logarithm of reduced stress is almost
constant or shows only a shallow minimum. In the
region of relative strain above 0.75, it increases at an
increasing rate with a total change of some 0.2–0.5.
However, for the silica-containing material V40 S05,
the latter increase is significantly larger, making almost
1. This is probably due to the large value of its relative
pre-stress.

A somewhat more complicated retraction behavior than
that shown for networks in Figs. 5–7, was found in the case
of the tread material�k � 0:4�: This might be due to the
probable presence of strain-crystallizing natural rubber in
the compound.

3.3.3. Stress–strain behavior on second elongation
Fig. 8 shows the experimental stress–strain dependencies

(points) obtained on the second elongation of one unfilled
and five filler-reinforced vulcanizates. For the tread mate-
rial, the SSD on the seventh elongation was also measured.
The first four cycles were performed at a constant maximum
stress. This resulted in the maximum strain and tension set
increasing in each cycle. The remaining three cycles were
performed at a constant maximum strain attained in the
fourth cycle; the maximum stress was decreasing going
from the fourth to seventh cycle. Linear coordinates are
used in Fig. 8 with stress plotted vs. the corrected extension
ratio. In Fig. 9, the SSDs are replotted in Mooney–Rivlin
coordinates (with one more unfilled material added). In Fig.
10, the data are plotted as log(reduced stress) vs. the relative
(corrected) strain which is the ratio of corrected strain,1 ,
and maximum (corrected) pre-strain,1max, obtained in the
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Table 7
Parameters of the JGmC2 equation for retraction and other properties of some networks

Parameter SBR 0 SBR B V40 S05 Hf20 Amb V50 Amb Hf40 Amb Hf60 Amb SBR B SG

n 0.30 0.25 1.0 1.0 1.0 1.10 1.40 1.0
C1 0.013 0.034 0.063 0.130 0.210 0.165 0.220 0.205
C2 0.047 0.190 0.060 0.237 0.065 0.281 0.210 0.250
lm 11.8 8.85 6.66 4.44 4.15 3.578 2.97 2.78
l2

a 10.71 7.66 6.50 4.12 3.72 3.40 2.85 2.64
TS 2.20 0.50 0.85 0.082 0.284 0.10 0.142 0.365

smax,1e/sb
b 0.59 0.60 0.79 – – – 0.59 0.40

C2/C1 3.8 5.6 1.0 1.8 0.31 1.7 0.95 1.2

a Maximum (corrected) extension ratio of retraction.
b Pre-stress/stress-at-break for a virgin specimen.

Fig. 8. Second (seventh) elongation in type A plot: experimental data (points), JGmC2L equation (curves; for parameters, see Table 8). 2—SBR B, 3—V40
S05, 4;2e, 4;7e—the 2nd and the 7th elongation, respectively, tread, 5—Hf30 Bue, 6—Hf40 Kil, 7—SRR B SG.



cycle preceding the cycle in question (i.e. in the first, or,
sixth cycle, respectively). Points are represented by curves
drawn using the JGmC2 or JGmC2L equations, for para-
meter values given in Table 8.

Compared with the first retraction curves, the stress–

strain behavior on the second elongation appears to be
less simple. The values ofn show a tendency to be larger
than on retraction. For materials containing precipitated and
in situ formed silica,C2 shows a distinct tendency to recover
from its low values found on retraction. This suggests that
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Fig. 9. Data and curves of Fig. 8 in the Mooney–Rivlin plot. Points and curve 1—SBR 0.

Fig. 10. Data and curves of Fig. 9 in coordinates log(reduced stress) vs. relative strain (corrected strain normalized with respect to the maximum corrected strain
on the 2nd (7th) elongation). Points and curves 5, 6, 7, are shifted vertically by20.65, 1 0.10, 1 0.15, respectively.



the silica–silica interconnections, which on the first elonga-
tion can be assumed to have been severely broken, have
remained in that state during retraction (lown, C2), but
afterwards managed to partially reform to become active
during the second elongation. For the V40 S05 network,C2

changes from 0.06 to 0.20, andn from 1 to 1.7. For the SBR B
SG network,C2 changes from 0.25 to 0.62, andn from 1 to
2.5. For carbon-black-containing networks, the changes inC2

between the first retraction and the second elongation do not
seem to have a distinct and systematic character.

While the finite extensibility parameter of unfilled
networks is virtually constant both on retraction and on
the second elongation, the carbon-black-reinforced and
precipitated silica-reinforced networks all show a certain
strain-dependence of the finite extensibility parameters on
the second elongation although the overall change is smaller
than that on the first elongation (cf. Table 6). The values ofk
range between ca 0.2 and 0.6. The zero value ofk found for
the SBR B SG material is probably due to its rather low
relative pre-stress.

4. Conclusions

1. The modified Mooney–Rivlin equation where an addi-
tional empirical parameter is included in theC2 term is
able to describe reasonably well the low-elongation beha-
vior of filler-reinforced rubber-like networks.

2. A four-parameter combination of the modifiedC2 term
with the James–Guth equation gives a satisfactory
description of stress–strain dependences obtained on
retraction of a number of carbon-black- and silica-
containing SBR networks. The relative contribution of
the C2 term to the stress is large at small strains and
becomes small to insignificant at high strains.

3. The stress–strain behavior on the second elongation
(after pre-strain) and on the first elongation of virgin
specimens of filler-reinforced rubber-like networks is
less simple than on retraction. This has been ascribed
to strain-induced topological changes taking place on
increasing strain. On decreasing strain, such changes
are apparently less important, if they occur at all.

4. The stress–strain behavior at high increasing strains can
be quantitatively taken into account using the concept of
a strain-dependent finite extensibility parameter or, in
molecular terms, of a strain-induced increase in the aver-
age network mesh size. The latter may receive contribu-
tions both from the matrix (sliding of entanglements) and
from the matrix–filler interphase (disruption or sliding of
filler–matrix contacts).

5. The JGmC2L equation contains eight parameters, six of
them adjustable. It is able to give a sufficiently reliable
information (with less than ca 4% deviation) both on the
course and final point of the SSDs. Under specific condi-
tions of straining or network composition, the number of
necessary parameters diminishes.

6. Parametern has been found to increase with filler loading
sensitively reflecting the degree of filler-particles inter-
connectivity. Variations ofC1 and C2 with straining
conditions have to be explored in more detail. The aver-
age slopek of the strain-dependence of the finite exten-
sibility parameter gives a good and straightforward
information on the shape of SSD at high strains. It
decreases with pre-strain and tends to zero on retraction.
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Table 8
Parameters of the JGC2L equation for SSDs of pre-strained specimens and other properties of some networks

Parameter SBR 0 SBR B V40 S05 Tread Treada Hf30 Bue Hf40 Kil SBR B SG

n 1.25 1.0 1.70 2.8 1.9 1.10 2.0 2.50
C1 0.015 0.0425 0.054 0.112 0.070 0.145 0.192 0.240
C2 0.057 0.143 0.200 0.172 0.230 0.230 0.310 0.620
l1 11.39b 8.01b 6.05 4.10 5.50 3.30 2.58 2.75b

l2 11.39 8.01 6.95 5.30 6.65 3.79 3.38 2.75
lm,1 12.88b 9.62b 6.90 4.80 6.249 3.97 3.45 2.995b

lm,2 12.88 9.62 7.22 5.50 6.845 4.035 3.59 2.995
a – – 1.50 1.55 1.50 1.22 2.00 –
TSc 1.56 0.353 0.45 0.75 1.20 0 0.108 0.21
smax/sb

d 0.59 0.60 0.79 0.83 0.83 – – 0.40
lp

e 12.9 8.16 7.35 5.94 7.85 3.79 3.50 3.02
C2/C1 3.8 3.4 3.7 1.5 3.3 1.6 1.6 2.6
k 0 0 0.35 0.55 0.52 0.13 0.18 0

a The seventh elongation. All the other data refer to the second elongation.
b With l1 � l2 andlm;1 � lm;2; the JGmC2L equation reduces to the JGmC2 equation.
c Tension set prior to the beginning of the cycle.
d (Maximum stress in the preceding cycle)/(stress-at-break) of a virgin specimen.
e Maximum (uncorrected) extension ratio in the preceding cycle.



the Czech Republic for financial support of this work within
the grant project No. 203/98/0884.

References

[1] Meissner B. Polymer 2000 (in press).
[2] James HM, Guth E. J Chem Phys 1943;11:455.
[3] Kilian HG. Polymer 1981;22:209.
[4] Edwards SF, Vilgis TA. Polymer 1986;27:483.
[5] Morris MC. J Appl Polym Sci 1964;8:545.

[6] Mooney M. J Appl Phys 1940;11:582.
[7] Rivlin RS. Philos Trans R Soc 1948;A241:379.
[8] Mullins L, Tobin NR. J Appl Polym Sci 1965;9:2993.
[9] Ambacher H, Strauss M, Kilian HG, Wolff S. Kautsch Gummi

Kunstst 1991;44:1111.
[10] Kilian HG, Strauss M, Hamm W. Rubber Chem Technol 1994;67:1.
[11] Ikeda Y, Tanaka A, Kohjiya S. J Mater Chem 1997;7:1497.
[12] Bueche F. J Appl Polym Sci 1961;5:271.
[13] Bueche F. J Appl Polym Sci 1960;4:107.
[14] Harwood JAC, Mullins L, Payne AR. J Appl Polym Sci 1965;9:3011.

B. Meissner, L. Mateˇjka / Polymer 41 (2000) 7749–77607760


